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ABSTRACT 

Building footprints are essential for planning and designing new infrastructure like water reticulation, electricity 

transmission, sewer, and road networks. They are also necessary for delivery, census, and disaster management. It is 

therefore important to have up-to-date maps and GIS databases for service provision. However, mapping building of 

footprints in semi-informal settlements is problematic because of the spatial heterogeneity of settlements. This study 

evaluates three non-parametric machine learning algorithms for extracting building footprints from WorldView-2 

(WV2) satellite imagery in a semi-informal settlement. WV2 satellite imagery data was fused with gray-level co-

occurrence matrices (GLCM) to enhance building extraction. The algorithms used include the Gaussian Mixture 

Model (GMM), Random Forest (RF), and Support Vector Machine (SVM). The results indicate that GLCM does 

not improve the detection of buildings when using the GMM algorithm, but it increases building detection with RF 

and SVM. The GMM algorithm achieved the highest average accuracy of 92% for building detection. However, 

SVM and RF have an overall accuracy of 79% and 70% respectively. Though RF did not perform very well in 

identifying individual buildings, its overall accuracy was high. The outcome indicates that machine learning 

algorithms can adequately map building footprints from high-resolution satellite imagery. 

Keywords: Building detection, WorldView-2, machine learning, Gray-Level Co-Occurrence Matrix (GLCM) 
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INTRODUCTION 
 

Rapid urban development in developing countries has led 

to the emergence of informal settlements (Hofmann et al.; 

Mboga et al. 2017; Matarira et al. 2022). UN-Habitat 

(2015) defines informal settlements as residential areas 

where (i) there is no security of tenure; (ii) basic services 

are not available, and (iii) housing is not compliant with 

current housing and planning regulations. Shortage of 

basic engineering services, such as water, sewerage and 

solid waste removal can lead to undesirable living 

conditions. These services are crucial for attaining the 

global SDGs, local policies (i.e. Vision 2036), disaster 

management, and management of humanitarian crises. 

However, it is difficult to provide basic services because 

of a shortage of spatial data in informal settlements. 

Spatial information is required to improve understanding 

of settlement morphology, population distribution and 

emerging settlement patterns, which are necessary for 

decision-making and planning (Mboga et al., 2017). It is 

therefore critical to have up-to-date maps and GIS 

databases for better service provision and to identify and 

quantify services and infrastructure. Conventional, ground 

surveys and photogrammetry, mapping techniques have 

been used to gather spatial information. However, they 

(ground surveys and photogrammetry) are expensive, 

resource-intensive and time-consuming resulting in data 

unavailability and information gaps (Mudau and 

Mhangara, 2021). Consequently, there is a need for 

methods that can generate reliable and consistent data on 

the spatial distribution of built-up areas and building 

structures. 

Earth Observation (EO) provides an alternative to 

conventional mapping. EO allows for the collection of 

continuous spatial data in satellite images. Technological 

advances in EO have led to the availability of high-

resolution images, which can be leveraged in mapping 

complex areas like informal settlements. High-resolution 

imagery has been used in several studies for the extraction 

of human settlements (Hofmann et al.; Mboga et al., 2017; 

Shafizadeh-Moghadam et al., 2021), land use and land 

cover (LULC) (Tassi and Vizzari, 2020; Vizzari, 2022), 
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and building detection (Zhao et al., 2018; Khatriker and 

Kumar, 2018). In the building detection studies, Zhao et al. 

(2018) used convolutional neural networks while 

(Khatriker and Kumar, 2018) used image segmentation. 

Accordingly, various methods are used in building 

footprint extraction, the basic layer in a spatial database. 

Feature extraction from remote sensing imagery data 

can be done through visual image interpretation, 

traditional pixel-based classification, Object-based image 

analysis (OBIA) and machine learning techniques (Mudau 

and Mhangara 2021). Informal settlements are 

characterised by small buildings, less vegetation, and 

irregular patterns, hence visual interpretation is labour-

intensive and time-consuming. OBIA yields better 

classification results, however, it requires high 

computational power and proprietary imaging software 

(Vizzari, 2022). Machine learning algorithms have also 

been found to produce good results and are easily 

available. According to Sheykhmousa et al. (2020), 

Random Forest (RF), Support Vector Machines (SVM), 

and deep learning algorithms are the most used 

classification methods. Deep learning techniques can 

retrieve complex patterns and informative features from 

satellite images. However, they are highly dependent on 

the amount of data. RF and SVM, on the other hand, have 

been found to learn tasks from a small amount of data, but 

with competitive results to deep learning  (Mboga et al., 

2017). GLCM indices are normally used to improve 

machine learning classification. For example, Burnett et 

al. (2019) mapped the extent of coconut using a 

combination of WorldView-2 (WV2) imagery and GLCM 

textures. While Pantoja et al. (2023) conducted LULC 

classification using GLCM and Landsat 8 imagery.  

This study proposes to use machine-learning 

classifiers, GMM, RF, and SVM, to map building 

footprints in Old Naledi, an informal settlement in 

Gaborone, Botswana, using WV2 satellite imagery. To 

achieve this the study will (i) investigate the significance 

of GLCM texture features in detecting building footprints 

from WV2 images and (ii) explore the performance of 

machine-learning classifiers in extracting building 

footprints.  

 

MATERIALS AND METHODS 

 

Study area 

Old Naledi, known as “Zola”, was chosen as the 

study area. It is located at the southern tip of Botswana’s 

capital, Gaborone (Figure 1).  “Zola” covers a total area of 

around 159 hectares. The population is 18,050 as of the 

2022 census (Statistics Botswana 2022). The origin of Old 

Naledi can be traced to the construction of Gaborone 

industrial areas in 1964 (Van Nostrand 1982). The area 

lacks proper street arrangements and public sanitation 

facilities. It is comprised of low-income housing which 

emerged as a semi-informal settlement and is an area with 

high crime rates in Gaborone. For planning and upgrading 

the area, the up to date topographical and building 

footprint is required.  

 

 

 
Figure 1. Study area showing (a) Botswana, (b) Gaborone 

and (c) Old Naledi 

 
Methodology 

Figure 2 shows the process used in extracting 

buildings from high-resolution satellite images. The 

workflow includes image composition, textural analysis, 

machine learning (ML) image classification, and accuracy 

assessment. The first step is to acquire high-resolution 

images from WV2 and pre-process the image to a 

multispectral image (MSI). To improve the resolution of 

the MSI image, pan-sharpening is applied using the 

panchromatic band of WV2 imagery.  

The second stage involves calculating texture metrics 

using the GLCM technique. The GLCM indices are 

integrated with the pan-sharpened image input into ML 

algorithms (GMM, RF, and SVM) to classify the image 

pixels into buildings, bare soils, trees, roads, and grass. 

Finally, an accuracy assessment is conducted using the 

classification metrics outlined in the Accuracy Assessment 

Section. 

(a

) 

(b) 

(c) 
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Figure 2. Flowchart of informal settlement classification 

using machine learning 
 

Table 1. World View-2 spectral bands 

Spectral band 
Wavelength  

(nm) 

Resolution 

(m) 

Coastal Blue 400 - 450 1.84 

Blue  450 - 510 1.84 

Green 510 - 580 1.84 

Yellow   585 - 625 1.84 

Red 630 - 690 1.84 

Red Edge 705 - 745 1.84 

Near Infrared 1 770 - 895 1.84 

Near Infrared 2 860 -1040 1.84 

Panchromatic 450 - 800 0.46 

 

Image composition 

WorldView-2 (WV2) satellite imagery was used as 

the primary data source. WV2 is a DigitalGlobe satellite 

sensor launched in 2009 (Belfiore and Parente 2016). The 

sensor provides eight spectral bands and a high-resolution 

panchromatic band (see Table 1). This study utilized the 

red, green, blue, Near Infrared 1 (NIR1), and 

panchromatic (PAN) bands of WV2 imagery. A 

multispectral image (MSI) is created by combining four 

low-resolution multispectral bands (Red, Green, Blue and 

Near Infrared 1 (RGBNIR)) through layer stacking (Figure 

3(a)). By combining datasets with different signatures, 

layer stacking can improve the analysis and interpretation 

of the data and allow the visualisation of complex data. 

The RGBNIR MSI image created above is a colour 

image with a spatial resolution of 1.84 m, and at this 

resolution, some objects will not be visible. On the other 

hand, the WV2 Panchromatic band is a monochrome 

(black and white) image with a spatial resolution of 0.46 

m. Thus, the PAN image lacks a realistic true view of the 

world. The two images can be fused to produce an 

enhanced image with a high spatial and spectral resolution 

through a process called pan-sharpening (Li et al. 2017). 

Pan-sharpening reveals more information than the 

individual input image, as the image will be rich in 

spectral content and have high resolution (Fig. 3b). 

 

Gray-level co-occurrence matrix (GLCM) 

textural features 

Textural features are important for classifying data 

with low inter-class variability (Burnett et al. 2019) as 

they improve classification and avoid fuzziness (Matarira 

et al. 2022). The GLCM algorithm is widely used in 

extracting textural data from remote sensing data 

(Khatriker and Kumar 2018; Shafizadeh-Moghadam et al. 

2021; Matarira et al. 2022). GLCM is used in the 

computation of spatial dependence of grey levels in an 

image, it creates a matrix describing the frequency of the 

appearance of individual pairs of values in a specific 

image fragment. GLCM textures can be extracted from a 

single multispectral band, a composite of multispectral 

bands, or a panchromatic band. The WV2 PAN band was 

used, because of its high spatial resolution. Seven textural 

features were extracted from the WV2 PAN, including 

mean, contrast, variance, second moment, entropy, 

homogeneity, and dissimilarity. The description of the 

textures is presented in Table 2. 

 

 
Figure 3. WorldView-2 satellite images (a) RGBNIR image and (b) pan-sharpened image 
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Table 2. GLCM features calculated from PAN band and their descriptions 

 GLCM Texture Texture Group GLCM Texture Description 

1 Mean Statistical  Measures the mean of the gray level sum distribution of the image 

2 Contrast  Contrast  Measures the contrast based on the local grey level variation 

3 Variance  Statistical  
Measures the dispersion of the grey level distribution to emphasize the visual 

edges of land-cover patches 

4 Second Moment Orderliness  Measures the uniformity or energy of the grey level distribution of the image. 

5 Entropy  Orderliness  Measures the degree of the disorder among pixels in the image 

6 Homogeneity  Contrast  Measures the smoothness (homogeneity) of the image 

 

Image classification using machine learning 

As mentioned, three non-parametric algorithms are 

applied for the pixel-based image classification, and these 

are GMM, RF, and SVM. Input data to the machine 

learning algorithms is the MSI image alone and the seven 

(7) GLCM textural indices layer-stacked consecutively on 

the MSI. Therefore, eight (8) input data sets are utilized 

(Table 3), resulting in 24 classifications. 

 

Table 3. layer-stacked data inputs to ML classification 

algorithms 

Input Image  

1 MSI 

2 1 + Mean  

3 2 + Variance 

4 3 + Contrast 

5 4 + Second Moment 

6 5 + Homogeneity 

7 6 + Entropy 

8 7 + Dissimilarity 

 

Gaussian mixture model (GMM) 

The GMM model is an unsupervised clustering 

method that groups subpopulations of a population based 

on the Gaussian distribution (Wan et al. 2019). The model 

is composed of multivariate Gaussian components. GMM 

is then used to distribute data points to the Gaussian 

components. Equation 1 below represents the GMM 

model. 

𝑃(𝑥) = ∑ 𝜋𝑖𝒩(𝑥|𝜇𝑖, Σ𝑖)
𝑘

𝑖=1
 #(1)  

 

were 𝑃(𝑥) is the probability of pixel x, 𝐾 is the 

number of components in the mixture, 𝜋𝑖 is the weight of 

the 𝑖𝑡ℎ component, 𝒩(𝑥|𝜇𝑖 , Σi) is the Gaussian 

distribution, 𝜇𝑖 is the mean vector and Σ𝑖  is the covariance 

matrix. The matrix weight must satisfy the condition 

∑ 𝜋𝑖 = 1𝐾
𝑖=1  (Menezes and Poojary 2020). 

 

Random forest (RF) 

RF is a non-linear, tree-based, supervised machine-

learning algorithm that was proposed by Breiman (2001) 

in 2001.  It is an ensemble learning (multiple classifier 

systems) technique capable of performing both 

classification and regression analysis (Rahaman et al. 

2019). Sub-samples or decision trees are selected through 

bootstrapping to ensure diversity in the decision trees. The 

decision trees are then trained through bootstrap 

aggregation (bagging) to build a model, which guarantees 

independence among the trees. The models from each 

decision tree are combined to arrive at the final model. 

Observations that are not used in a bootstrap sample, 

which are called “out-of-bag” (OOB), are used for error 

calculation and variable importance (Cutler et al. 2012). 

 

Support vector machine (SVM) 

SVM is a supervised machine learning algorithm for 

finding the optimal hyperplane that separates a dataset into 

predefined classes by using training data (Sheykhmousa et 

al. 2020).  In SVM, the goal is to increase the margin of 

training data closest to the hyperplane from each class 

(Foody and Mathur 2004). The margin is the distance of 

training samples closest to the optimal boundary, the 

samples known as support vectors. The advantages of the 

SVM are that it is well suited to small complex data and 

high dimensional spaces.  

 

Accuracy assessment 

Classification accuracy assessment was computed 

from the confusion matrix, which is commonly used in 

evaluating classified maps (Barsi et al. 2018; Tassi and 

Vizzari 2020; Vizzari 2022). The matrix shows the number 

of true positives (TP) for a correct prediction, true 

negatives (TN) for a correct rejection, false positives (FP) 

for an incorrect prediction, and false negatives (FN) for a 

true rejection. The matrix allows for quantitative analysis 

of the classification using metrics in equations 2 - 5.  

𝑈𝐴 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 #(2)  

 𝑃𝐴 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
#(3)  

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑈𝐴 × 𝑃𝐴

𝑈𝐴 + 𝑃𝐴
 #(4)  

 𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
#(5)  
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where 𝑃𝐴 is the producer’s accuracy, 𝑈𝐴 is the user 

accuracy mearing the, OA is the overall accuracy. PA gives 

the ratio of the true detected pixels against the building 

pixels and is related to omission error (1 − 𝑃𝐴). UA is the 

ratio of detected pixels against all detected pixels and is 

concerned with the commission error (1 − 𝑈𝐴). The F-

score is a more sensitive and specific measure of the 

reliability of a classifier as it combines PA and UA. 

 

RESULTS AND DISCUSSION 

 

Significance of GLCM textures 

Figure 4 shows an extract from the classification for 

each input and classification model. The figure shows 

more detail for input 1 (MSI) and less for inputs 2 – 8, 

which were layer-stacked with GLCM textures, in the 

GMM classification. This could indicate that GLCM 

textures cause GMM to overfit or underfit the data. For the 

RF algorithm, all images are similar showing that GLCM 

textures have less influence on building extraction. The 

SVM classification shows more detail when GLCM 

textures are layer-stacked on the RGBNIR image. Thus, 

GLCM textures improve SVM classification. 

Table 4 shows the quantitative classification analysis 

for each input data and classification model. Table 4 

confirms the results in Figure 4 results, from which it is 

evident that GLCM texture reduces the predicting power 

of GMM. When textures are introduced, the sensitivity of 

prediction is reduced as shown by the low PA values. The 

variation of PA and UA values is small for the RF 

classification, hence GLCM textures have less impact on 

RF building detection. SVM classification shows fewer 

false hits for input 3 (MSI + MEAN + CONTRAST) with 

a PA value of 99.28%. Contrast, entropy and dissimilarity 

reduce the predicting power of SVM.  

The F-score and OA (Table 4 and Figure 5) show that 

the input with the best precision, sensitivity, and accuracy 

was input 1 for GMM and input 3 for SVM. Therefore, 

inputs 1 and 3 are selected as the representatives of the 

GMM and SVM models respectively.  

For RF the inputs with the highest values differ, input 

7 has the highest F-score value whereas input 6 has the 

highest OA value (Table 4 and Figure 5). As OA is the 

accuracy of a classifier for all classes, input 6 is selected 

as the representative for the RF model. According to 

Figure 6, RF is more consistent in identifying the different 

classes and is more appropriate for the classification in this 

area. 

 

 
Table 4. Classification results of the different models 

 

Input 
GMM RF SVM 

PA (%) UA (%) F-score (%) PA (%) UA (%) F-score (%) PA (%) VA (%) F-score (%) 

1 99.3 99.47 99.38 99.51 99.51 99.51 99.12 98.48 98.80 

2 97.77 99.35 98.55 99.04 99.61 99.32 98.64 99.53 99.08 

3 97.51 99.00 98.25 99.26 99.76 99.51 99.28 99.36 99.32 

4 97.18 98.74 97.95 99.57 99.82 99.69 98.08 99.55 98.81 

5 94.23 89.51 91.81 99.49 99.90 99.69 99.20 98.97 99.08 

6 93.65 89.30 91.42 99.59 99.92 99.75 98.88 99.28 99.08 

7 93.65 89.30 91.42 99.79 99.96 99.87 98.93 99.01 98.97 

8 93.44 89.26 91.30 99.45 99.69 99.57 98.89 98.89 98.89 

Figure 4. Classification results from the three models (GMM, RF, and SVM). The numbers on the left indicate the layer-

stacked datasets derived from Table 3 
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Figure 5. Overall accuracy of the classification. Input 1 is 

the WV2 RGBNIR image. Inputs 2 - 8 contain input 1 

layer-stacked with textural features 

 

Validation of building extraction  

Three different portions were selected from the 

reference raster figure and compared with the best 

classification results from each model. The selected  

portions had a high ratio of buildings. For GMM the 

best classification used MSI as input, whereas for RF the 

best classification was input 6, which has MSI + Textures 

(Mean, Variance, Contrast, Second Moment, and 

homogeneity). Input 3, which had MSI + Textures (Mean, 

Variance, Contrast) gave the best classification for the 

SVM algorithm; hence it was used here. Pixel differences 

were calculated between the two raster layers, reference 

and classified image, to find the error of building detection 

from each algorithm. Consequently, giving the accuracy of 

each model. 

Figures 6–8 show the prediction errors from each 

algorithm and portion. A visual inspection of the images 

indicates that GMM gave superior results, followed by 

SVM and RF. RF shows misclassifications especially at 

the boundaries even though the input image had GLCM 

textural indices. In terms of building edge detection GMM 

and SVM gave good results. On the other hand, RF was 

not able to identify the building edges especially on 

portion 2 and 3. 

Quantitative analysis indicates that GMM had fewer 

prediction errors with an average accuracy of 92.38% for 

all the portions. The highest accuracy of GMM was in 

portion 3 at 99.8%. RF and SVM had average accuracies 

of 70.53% and 79.26% respectively. Portion 1 results were 

the most accurate, with the lowest accuracy of 86.5% for 

SVM (Figure 6). Portion 2 (Figure 7), which had a high 

density of buildings, had the lowest accuracy for all the 

models at 82.90%, 64.78%, and 54.5% for GMM, SVM, 

and RF respectively.  

 

 

 

 

 
Figure 6. Classification results for image portion 1. (a), (b), and (c) are classification results for GMM, RF, and SVM 

respectively. Errors of the models are (d) GMM, (e) RF, and (f) SVM 
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Figure 7. Classification results for image portion 2. (a), (c), and (e) are classification results for GMM, RF, and SVM 

respectively. Errors of the models are (b) GMM, (d) RF, and (f) SVM. 

 

 

 
Figure 8. Classification results for portion 3. (a), (c), and (e) are classification results for GMM, RF, and SVM respectively. 

Errors of the models are (b) GMM, (d) RF, and (f) SVM. 

 

CONCLUSIONS 

 

The study has shown that integrating remote sensing and 

machine learning can adequately map informal 

settlements. The current results demonstrate that GMM 

performs poorly with textural indices, whereas RF and 

SVM need textural indices to classify features on an 

image. The highest OA for RF and SVM of 99.90% and 

99.78% respectively, were obtained when textural indices 

were fused into the WV-2 image. RF performed 

exceptionally well in detecting different classes in the 

image. However, RF did not perform well in extracting 

building footprints with an average accuracy of 70.5%. 

The model that performed well in detecting building 
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footprints was GMM with an accuracy of 92.4%. The 

outcome of settlement maps from this study was 

satisfactory, hence remote sensing and machine learning 

could be used in mapping traditional villages as they have 

the same spatial structure as informal settlements. 
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